딥 러닝(Deep Learning) 기술을 이용해 특수한 수술 상황에서 혈압 변화를 예측하고 신속하게 대응해 환자 예후를 향상할 수 있는 길이 열렸다.
딥 러닝 기술은 인간의 뇌 신경 회로를 모방한 신경 회로망을 다층적으로 구성하여 컴퓨터가 다양한 데이터를 통해 사람처럼 생각하고 배울 수 있도록 학습시키는 기술이다.
순천향대학교 부천병원 마취통증의학과 김상현 교수팀(정양훈·이미순)은 동 대학 빅데이터공학과 정영섭 교수(現 충북대학교 컴퓨터공학과)와 협업으로 ‘딥 러닝을 이용해 로봇 복강경 수술 환자에서 복압 변화에 따른 혈압 변동 예측(IF: 3.752)’이란 연구 논문을 SCI(E)급 국제학술지(PLOS ONE)에 최근 발표했다.
수술 중 높은 혈압 및 혈압 변화가 크면 환자 예후에 좋지 않은 영향을 미친다. 로봇을 이용한 하복부 장기 수술 시 복강 내 압력을 올리고 환자 머리를 바닥 쪽으로 기울인 자세를 취하는데, 이런 특수 환경에서는 혈압 변화를 예측하기가 더 어렵다.
최근 딥 러닝 기술을 이용해 수술 중 혈압 변화를 예측하려는 시도가 활발하나, 로봇을 이용한 하복부 장기 수술과 같이 복압과 체위 변화 등 변수가 많은 특수 환경에서 혈압 변화를 예측한 연구는 없었다.
이에 김상현 교수팀은 2018년 10월부터 2021년 3월까지 만 19세 이상 환자를 대상으로 순천향대 부천병원이 시행한 로봇 하복부 장기 수술(난소방광절제술, 자궁적출술, 자궁근종절제술, 전립선절제술, 자궁관난소절제술) 533건의 데이터를 기계학습시키고, 순환신경망(Recurrent Neural Networks)을 이용해 10분 이내에 복강 내 혈압이 기준 혈압보다 20% 이상 상승할지 예측하는 모델을 개발했다.
‘로봇 수술 시 혈압 변동 예측 모델’의 정확도를 검증한 결과, 그 유효성을 입증했으며, 39개 상황의 예측값을 도출하는 데 걸린 시간이 3.472밀리초(ms, 1000분의 1초)에 불과해 혈압 변화에 대한 신속한 대응이 가능한 것으로 나타났다.
정양훈 순천향대 부천병원 마취통증의학과 교수는 “이번 연구는 로봇 수술과 같이 특수한 수술 환경에서 혈압 변화를 예측한 첫 연구”라며 “이번 연구를 기초로 다른 특수한 수술 상황에서 혈압 변화를 예측하는 모델을 개발함으로써, 환자의 급격한 혈압 변화를 최소화하고 수술 예후를 향상할 수 있을 것으로 기대한다”라고 말했다.
한편, 김상현 교수팀은 2018년부터 순천향대 빅데이터공학과 교수진과 협업을 통해 활발한 연구 활동을 하고 있다.
수술 중 수집한 생체신호와 각종 약물 투여 정보, 그리고 전자의무기록 데이터를 이용해 ‘기계학습을 통한 수술 중 혈역학적 변화 예측 모델’을 개발하고, 관련 논문을 SCI(E)급 국제학술지에 여러 차례 발표한 바 있다.